php 中的图算法提供强大的工具来处理图形数据结构,包括:dijkstra 算法:查找无权重图中从源节点到所有其他节点的最短路径。kruskal 算法:构建指定权重的图中的最小生成树。
如何在 PHP 中实现图算法
图算法是处理由节点和边组成的数据结构的强大工具。在 PHP 中,可以使用不同的算法来解决各种图相关问题。
Dijkstra 算法
Dijkstra 算法可用于查找无权重图中一个源节点到所有其他节点的最短路径。以下示例展示了如何使用 PHP 实现 Dijkstra 算法:
class Graph {
private $nodes = [];
private $edges = [];
public function addNode($node) {
$this->nodes[] = $node;
}
public function addEdge($node1, $node2, $weight = 1) {
$this->edges[$node1][$node2] = $weight;
}
public function dijkstra($source) {
$distances = array_fill_keys($this->nodes, INF);
$distances[$source] = 0;
$visited = [];
while (count($visited) < count($this->nodes)) {
$minDistance = INF;
$minDistanceNode = null;
foreach ($this->nodes as $node) {
if (!in_array($node, $visited) && $distances[$node] < $minDistance) {
$minDistance = $distances[$node];
$minDistanceNode = $node;
}
}
if ($minDistanceNode === null) {
break;
}
$visited[] = $minDistanceNode;
foreach ($this->edges[$minDistanceNode] as $neighbor => $weight) {
$newDistance = $distances[$minDistanceNode] + $weight;
if ($newDistance < $distances[$neighbor]) {
$distances[$neighbor] = $newDistance;
}
}
}
return $distances;
}
}
// 实战案例:计算图中的最短路径
$graph = new Graph();
$graph->addNode(\'A\');
$graph->addNode(\'B\');
$graph->addNode(\'C\');
$graph->addNode(\'D\');
$graph->addEdge(\'A\', \'B\', 6);
$graph->addEdge(\'A\', \'C\', 8);
$graph->addEdge(\'A\', \'D\', 10);
$graph->addEdge(\'B\', \'C\', 3);
$graph->addEdge(\'B\', \'D\', 9);
$graph->addEdge(\'C\', \'D\', 12);
$distances = $graph->dijkstra(\'A\');
var_dump($distances);




