臻享优惠价:最高返 500 抵扣券 → 查看活动!>>>

比较自底向上算法和自顶向下算法的传递闭包算法

比较自底向上算法和自顶向下算法的传递闭包算法 - 我爱模板网

传递闭包算法对比:自底向上算法 vs 自顶向下算法

引言:
传递闭包算法是图论中的一种常用算法,能够在有向图或无向图中寻找图的传递闭包。在这篇文章中,我们将对传递闭包算法的两种常用实现方式进行对比:自底向上算法和自顶向下算法,并给出具体的代码示例。

一、自底向上算法:
自底向上算法是传递闭包算法的一种实现方式,通过计算图中所有可能的路径,构建出图的传递闭包。其算法步骤如下:

  1. 初始化传递闭包矩阵TransitiveClosure,将其设置为图的邻接矩阵。
  2. 对于每一个顶点v,将TransitiveClosurev设置为1,表示顶点本身是可达的。
  3. 对于每一对顶点(u,v),如果存在一条从u到v的边,则将TransitiveClosureu设置为1。
  4. 对于每一对顶点(u,v),以及所有其他顶点w,如果TransitiveClosureu和TransitiveClosurew均为1,则将TransitiveClosureu设置为1。
  5. 循环迭代第4步,直到传递闭包矩阵不再发生变化为止。

下面是自底向上算法的具体代码示例,以邻接矩阵Graph和传递闭包矩阵TransitiveClosure为输入:

def transitive_closure(Graph, TransitiveClosure):
    num_vertices = len(Graph)

    for v in range(num_vertices):
        TransitiveClosure[v][v] = 1

    for u in range(num_vertices):
        for v in range(num_vertices):
            if Graph[u][v]:
                TransitiveClosure[u][v] = 1

    for w in range(num_vertices):
        for u in range(num_vertices):
            for v in range(num_vertices):
                if TransitiveClosure[u][w] and TransitiveClosure[w][v]:
                    TransitiveClosure[u][v] = 1

    return TransitiveClosure
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。

给TA打赏
共{{data.count}}人
人已打赏
豆包可以帮你高效完成AI问答、AI对话、提供软件相关教程以及解决生活中遇到的各种疑难杂症,还能帮助你进行AI写作、AI绘画等等,提高你的工作学习效率。
!
你也想出现在这里?立即 联系我们吧!
信息
个人中心
购物车
优惠劵
今日签到
搜索